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In factor analysis one generally thinks of a transformation solution

within either an orthogonal or an oblique framework. In this manuscript

a general model is presented for the ndepeudent clutiter solution in

factor analysis. It is demonstrated that there may possibly he- a variety

of independent cluster solutions which may be generated for a given

set of data. Every orthogonal independent cluster solution is discussed

as having An oblique analog.

The equations presented are based upon the Harris. and Kaiser[1964J

theory of developing oblique solutions through the use of orthogonal

transformation matrices. An analytic basis for the computation of the

orthogonal transformation matrices is presented in the form of the

ortaomax criterion[Saunders, 1962] and finally some empirical appli-

cations of the model are presented and discussed.

Assume some (n x r) factor matrix P determined by any orthogonal

factoring procedure. Then let the major product noment of P define

an (n x n) singular matrix. R*, of rank r.

(1) R*

Assuming that the initial factoring was done on a population

variance-covariance matrix or correlation mat -.x, the diagonal Lntries

of of R-
*
will repres the common variances of the variables while the

th off-diagonal entry of R* will represent the covariance between

the common portions of variables i and and will approximate the

population covariance between variables i and j.



The principal axis representation of R* will provide a basis for

the discussion to follow. Compute the principal axis representation

QM of R -, where the columns of g are unit length latent vectors associated

with the non-zero latent roots which are the diagonal entries of M2.

The General Model an lnde ndent Cluster Solution of

Let the ( -x r) square matrix T represent any orthonormal matri

then (T' T= TT' I). All orthogonal transformation solutions, F, of

QM may be depicted as

(2) F m QMT. (An orthogonal transformation solution of R .)

Thus the basic structure of F consists of a left orthonormal,

Q, a right orthonormal, T, and a basic diagonal M. The matrix R*

represents the major product moment of P. In a later section the

computation of T is discussed in some detail. At this point it is only

_ necessary to assume that once determined T is coastant in equations

2, 3, 4, 5, 6, 7, and 8.

For the oblique analog of F, let the (n x r) matrix A represent

a primary pattern matrix, in the sense of Holzinger and Harman [1941]

and let B* represent a primary structure matrix with W representing the

the intercorrelations of the primaries. Then from Harris and Kaiser

[19641 the following equations may be used for computing an independent

-cluster solution

(3) A = Q/Di (An Oblique Primary Pattern for

(4) W* D-1T142TD-1 (An Oblique Primary Intercorrelation Matrix.)

(5) (An Oblique Primary Structure for le.)

The matrix D in equations 3, 4, and 5 is a diagonal matrix totally

dependent upon.the values cf M and T and is chosen so that (MT) will

2.



be column normalized when post multiplied by D , thereby insuring that

the primaries are of unit variance. If D and its inverse are elimi-

nated from equations 3, 4, and 5 then the oblique covariance matrices

result=

(6) A = 21;

(7) W a 2121 ;

2
(6) B = 'M -T

The matrix A may be thought of as a matrix .of raw regression

weights for predicting the n variables from the r un-normalized primaries.

The matrix W represents the covariances between the r primaries with

the diagonal of W representing the variances of the r primaries and also

representing the diagonal elements of D?. The matrix B may bethought

of as a matrix of covariances of the r primaries with the n variables.

Within a Thurs -ian [1947] framework the matrix A may-also be

thought of as the matrix of covariances of the r reference vectors with

the n variables. While the matrix-B may be thought of within a Thur-

stonian framework as the matrix of raw regression_weights for predicting

the n variables from the'r un-normalized reference vectors. The

inverse of W, W-1, represents the covariances between the r reference

vectors with the diagonal of W- representing the variances of the

r reference vectors.

The well known relationships between pattern, structure, factor

intercorrelation and R* may be denoted as

9) R = ASIA- BA= = W B*A*-



Regardless of whether one is working in a T_hurstone or a Holzinger

framework the matrix of interest in the oblique solution depicted here

is LIL, In equation 7 the matrix W represents the minor product moment

of F. Thus R* and W are product moment matrices determined from the

same "bas ucture". The orthonermal of R is a left orthonormal

for F and the orthonormal of W is a right i-thon- mal for F. The.,._.

latent roots of W are identical to the latent roots of R` The matrix

A is the product of the left and right orthonormals of F.

If theoretically "true" independent clusters are defined by the

data then each row of the "factor matrix" will contain only one non-

zero entry. Each variable will be of complexity one and the planar

plot of a.ny pair of columns of QM will show a concentration of points

along two radial streaks; a number of points at the origin and no points

off the radial streaks. If the independent clusters are mutually

orthogonal R* will be-a diagonal super matrix if the variables are

ordered properly and will have zero entries for all matric elements of

the main diagonal. The prinCipal axis solution for such a matrix, QM,

will have ideal simple structure Harris and Kaiser, 1964). If the

independent clusters defined by R are not mutually orthogonal then

R will not have the form of a diagonal supermatrix. For oblique

independent clusters the radial streaks defined by TLI may be "e-ilogcna-

lized" by post - multiplying QM by M-1. For perfect oblique independent

.clusters the planar plot of any pair of columns of Q will show a

concentration of points along two orttloal radial streaks; a nuM)er

of points at the origin and no points off the radial streaks. The r

radial streaks defined by Q will be mutually orthogonal. For non-



independent cluster data Q will define a scattering of points but not

radial streaks.

Variance Ulocation in the Inde endent Cluster Solution

In describing the allocation of common variance there is an

interesting duality between the oblique and the orthogonal independent

cluster solutions. Following from equation 9, and Holzinger and

Harman (1941, p.247) let the common variance of the th variable

be expressed in the general terms of an oblique solution as follows:

*2 *2 * * *
(10) = + a. .-I- a._ 4- 2a la .4- 2a.31

The direct c.ontri buti.ons of t r n variance

r.

variable j are given by the first r terms of equation 10, while the

joint contributions of the factors are given by the remaining, r(r-1 )/2,

terms in equation 10.

The direct contributions of the r factors to the common variance

all n variables are obtained by summing the direct contributions

of each factor across all n variables as follows:
n

(11) a.,i

jl
e

The r r-1 /1 joint contributions of pa

variables are given by:
n

(12) 24i2
J2 .-

,

j 1

j=1
a.
ir

factors across all n

* * *
a,3

In expression 11 the values determined are just the column sums of

*
a.3 r-1

squares for A which are given also as the diagonal elements of the minor

product of A
*

. However the diagonal elements of the minor product of

-A are just the r diagonal elements of W or the variances of'the

primaries,



(13-a) (A)'(A) DT' TD

(ii -b) D2 = diagonal [ T' 2T)

Therefore within an oblique independent cluster framework the

direct contributions of the factors as noted in expression 11 may be

written as follows:

*2
(14)

-1 j=1
a,

2 ajr yr
The total joint contribution for the pair of fa_ ors k and k-1

as given by expression 12 is
n * *

- k-1 / -jk --

2w
k a.

j-j1
a

but the element (

i

a
jk a4

*
) is just the (k, k-1)th off-diagonal

=
entry of D2, which is zero, thereby implying that the following equality

* *
(15) 20

ajk 2j,k-1

will ajwayl hold for the oblique independent cluster solution. ihat is

to say, regardless of the "obliquity" of an oblique independent cluster

solution the total joint contribution of any pair of factors to the

total variance will always be zero.

It is immediately apparent from expression 11 that for an orthogonal

independent cluster solution there are no joint contributions for the

factors inasmuch as all nondiagonal values of W are zero. The direct

contributions of the factors are just the column sums of square f_

F. Thus the total sum of squares within A is the same as the total

slim of squares within F.

would seem that the orthogonal and oblique independent cluster

solutions represent the extreme ends of a span of possible oblique

solutions for given set-of data. For the oblique independent cluster



all common variance may be accounted for totally within the framework of

second order factors, the diagonal of W. For the orthogonal independent

cluster solution, the common variance contributions are accounted for

solely as a function of the uncorrelated first order factors. Thus,

those oblique solutions falling between. these two independent cluster

solutions would utilize both first and second order factors to account

for common variance.

hono_ a Use i,n the independent Cluster Model

Although the model discussed in this paper may be generalized to any

square (r x r) orthonormal, only the class of analytic orthonormals

associated with the orthomax criteria will be' discussed. Saunders(1962)

was the first to note that all analytic orthogonal transformation

procedures could be combined for general discussion inasmuch as they

all involve the same fourth degree moments of the data.

The general orthomax transformation criterion involves a max

imization of

(16) Maximum . =

k=-1

f ,
Olt

Where f.
jk is the j_c th element of the transformtransformation solution, when the

criterion is applied to a factor matrix whose rows are normalized
, the

solution is referred to as a "normal" type solution. When the t ns
formation solution 1 normal f

j
is the jk th element of'the matrix

(-171QMT). The matrix H2 is a diagonal matrix whose nonzero elements

represent the variance of then variables and is the diagonal of R*.

When the criterion is applied to a factor matrix whose rows, are:not

normalized the solution is referred to as a "raw"type solution.



When the transformation solution is raw f is the jk th element of -he

matrix (v1).

The value of Jr' in equation 16 is most crucial as it is the "orthomax

weight" and it specifically defines the blind orthogonal transformation

that is computed. When the orthomax weight is zero, (s = 0), maximizing

(QMT) in equation 16 will result in the raw quartimax transformation:

[Neuhaus and Wrigley, 1954]. When the orthoinax weight is unity, (s = 1),

equation 16 defines Kaiser's[1958] varimax-crierion. Within this same

framew rk it is:possible to define Seunder'-[1962] equamax criterion,

(s v r/2), and, theoretically, the principal axis transformation

criterion, 03) [Kaiser,1

Harris and Kaiser[i964] in their discussion of the independent

cluster solution suggest that the orthomax criterion be applid

rather than (QMT). Furthermore they note that because it is Q, the

unit length latent vectors of R * , that are being transformed the second

term in equation 16 will be a constant and is therefore irrelevant in

the transformation process. Thus, Harris and Kaiser always compute T

to implicitly maximize the raw qUartimax criterion applied (QT).

Although Harris and Kaiser do not note it specifically it is possible to

utilize the transformation matrix T computed as a function of Q to

define an orthogonal solution of the form (QMT). Technically then for

this one procedure the oblique solution has an orthogonal analog.. In

the empirical section to _follow we Will.modify the Harris and Kaiser

procedure j slightly by using the orthonor al T computed as a function

of (Q) to define an orthogonal olutlon of the fore (QMT). The set of



solutions computed in this fashion will he referred o as the "Harris

and Kaiser indpendent clus solutions". All discussion in the previous

sections is perfectly generalizable to the Harris and Kaiser independent

cluster solutions.

faiElAlIpplioations of the General Inge endent Cluster de

To clarify and illustrate the independent cluster model presented in

this manuscript six examples of independent cluster solutions are discussed.

Five of these examples are discussed within the framework of illustrative

data. For each of the illustrative examples the solution development

started with the principal axis representation of some orthogonal factor

solution.

For each data set orthogonal and oblique independent cluster solutions

were computed, One set of solutions was computed using the modified

Harris and Kaiser procedures. Twenty-four additional solutions were

generated through a systematic variation of the orthomax weight in

equation 16. The orthomax weight was varied from negative to positive

three in increments of one- half; first for the raw matrix (QM) and then

for the row normalized matrix (H-1QM). With two exceptions only the

"best" set of independent cluster solutions

the Harris and Kaiser solution's for each problem.

esented along with

Example 1 perfect 0 tho anal Independent Clusters

As previously noted when perfect orthogonal independent clusters

are defined by the data the principal axis represntation of the factor

solution will have ideal simple structure. In such a case given any one

of the family of orthomax criterion depicted by equation 16 the only

9



transformation of (Q) or 21) that will maximize it is the identity

matrix, T I. For such a data set, then (QMT) and (QTD) will be

identical. (Because of th redundancies of solutions for such an example

we will not provide any numerical representations of

xample drfect Oblique Independent Clu- Bipolar-Plasmodal)

For at least one data set defining perfect oblique independent

clusters there is a posS)ble problem in maximizing the raw orthomax

criterion when applied to (QMT). In Table 1 the principal axes form

of example 2 is presented. Note that when the orthomax criterion,

(.5 1 s-_ -3) -is applied to (QMT)for this example the maximization

of the criterion occurs for, (T = I), the identity matrix. As may

be seen in Table 1 a raw orthomax solution when used in conjunction

with the general independent cluster solution may result in a misleading

orthogonal representation of data-that define perfect oblique clusters.

Table-1 about here

Presented also in Table I are the Harris and Kaiser independent

cluster solutions for the data set. Clearly the oblique independent

clusters define an excellent transformation solution for these data;

Finally in Table 1 the normal varimax independent cluster solutions

are provided. There solutions are identical to the Harris and Kaiser

solutions. For these solutions the matrix (H-QMT) was utilized in

maximizing the orthomax criterion with the orthomax weight equal to

unity, It is both interesting and informative to point out that for

all orthomax weights greater than or equal to unity the matrix'(u rlQW)

10.
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would always maximize the orthomax criterion utilizing the- same orthonormal.

T. However for orthomax weights less than unity the only orthonor-al T
maximization

that would provide-a 46 for the orthomax criterion applied to (H -1QNT)

was the identity matrix.

The solutions in Table 1 suggest that perhaps one ould be well

advised not to utilize raw transformation solutions with the general

independent cluster model, at least initially.

ExaMple 3 Approximate Oblique Independent Clusters (Non- lasmodal)

The data used for this example define oblique factors that represent

approximate independent clusters. These data are the eight physical

variables referred to by-Holzinger. and Harman(1941) and used as an

illustrative example by Harris and Kaiser(1964) in the deVelopment of

their independent cluster solution.

Table 2-about here

For these particular data there were a number of'independent cluster

solutions generated by the orthomax criterion that did define clear

structure. However all of those solution sets associated with orthomax

weights greater than or equal to unity defined essentially the same

solutions; being almost identical to the solution set defined by the

Harris and Kaiser independent cluster procedures.

Although all 24 orthomax solutions generated.for this data set are

not presented here they appeared to define a very systematic relationship

between the orthomax weight, the orthogonal transformation matrix-and the

primary intercorrelation matrix. As the orthomax weight as varied from

11.
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negative three to positive three the primary intercorrelations

associated with the solutions defined by the orthogonal transformation

matrices varied from .24 to .48 for the raw solutions and varied from

.11 to .48 for the normal- solutions. The lowest primary intercorrelations

were associated with.the orthomax weights of negative three, however the

apparrent ideal primary intercorrel tion of .48 (Holzinger and Harman,1941)

was associated with a number of solutions. As the orthomax weight progressed

from negative three toward positive three the associated primaries

appeared to become more related until the degree of relationship. was

approximately .48. Once this particular level of relationship was attained

it served as--a ceiling inasmuch as all solUtions generated from subsequent

orthomax weights in the progression. toward positive three .resulted in

a primary interoorrelation of .48.

As with the previous .xamples the normal varimax and the Harris and

Kaiser procedures defined the solutions having the clearest structure.

For both sets-of solutions it is the oblique independent cluster solution

that has the clearest structure

Example 4 AF proximate ortho onal Independent Clus Non-Plasmodal)

The data used for this example define approximate orthogonal

were
independent clusters as might be noted_if one kl to plot the principal

axes representation in Table These data are referred to by Harman

(1967) -as the five socio- economic variables.

Table 3 about here

12.
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As with the other illustrative data sets 24 independent cluster

solutions were generated along with the Harris and Kaiser solutions.

Inasmuch as the normal varimax independent cluster soltuions appeared.

to result in the best structure they are presented along with the Harris

and Kaiser solutions in Table 3. The most obvious conclusion one might-

draw.from observing Table 3 is that the orthogonal independent cluster

solutionshave more trivial loadings, approximate zero loadings, than

do the oblique independent cluster- solutions.

As with the,previous example the smallest magnitude for the primary

intercorrelation was associated with an orthomax weight of negative

three. As.the orthomax weight approached positive unity the primary

intercorrelation stabilized at .28 and all subsequent oblique solutions

associated with orthomax weights greater that unity defined primary

intercorrelations of .28.-

In comparing theHarris and Kaiser solutions with the normal

varimax solutions it does not appear as though there is much difference

between the two sets of solutions defined. However when one compares

the orthono mai transformation matrices used for the two sets of

solutions 1:6 is readily apparent that there is a difference in the two

solution sets. The Harris and Kaiser solutions are influenced slightly

more by the first principal axis than are the normal varimax solutions.

In the development of the normal varimax Kaiser(1958) noted that the

-quartimax transformation solutions tended to be influenced by the

stronger principal axes. Whether of not this influence is desirable

might be debated, however the purpose of this manuscript is not one

13.



of debating the desirability of principal axis influences in the orthomax.,

transformation solutions.

Exa Non-Indeoenden- Cluster Problem(Thurstone Box eble

The Thursrone box problem(Thurstone,1947) is a classic plasmodal

. problem whose solution is known to be Something other than an independent

cluster solution. The variable complexities range from one to three ,

for this three factor solution. Although no evidence is offered in

this manuscript it is likely that if one were to define a span of

transformation solutions with the orthogonal independent cluster solution

one extreme and the oblique independent cluster solution at the other

extreme the solution to the box problem would be midway between the

two independent cluster solutions.

Unlike the other examples the subjective solution as well as three

sets of independent cluster solutions are presented for the box problem

in Table 4, the Harris and Kaiser solutions, the normal varimax solutions

and finally the solutions associated with the transformation matrix

determined as a function of maximizing the orthomax criterion for, an

orthomax weight of negative unity with the reported raw matrix QT). .

Table 4 about here

For the first two sets of solutions, the Harris and Kaiser and

the normal varimax, it is vsry,difficult to determine whether the

orthogonal solution has "bette imple structure that its oblique

analog. When comparing the Harris and Kaiser solutions with the normal

varimax solutions it is evident that they are almost identical solutions.

14.



Table 4 Selected General Independent Cluster Soiutions for Illustrative Example 5*.

Type Solution

Harris and Kaiser

Principal Axial' .Oblique Orthogonal

1 66 64 -40
2 73 06 67

3 66 -68 -28
4 87 35 33
5 83 --35 -42
6 84 -54 04

7 86 51 07
Pattern 8 84 28 -46
Matrix 9 87 -28 42

10 88 44 20
11 88 -02 -47
12 88 -42 25
13 67 64 -37
14 72 -01 66
15 63 -66 -32
16 94 -30 -07
17 97 25 -02
18 '62 61 -42
19 71 13 64
20 66 -68 -27

109 -11 -12 99 05 13
-13 -11 '110 13 13 98
-12 108 -11 05 98
41 -14 80 56 12. 81-

33 91 -17 43 89 14
-15 84 35 09 87 49
73 717 51 79 09 61
90 33 -15 88 44 16

-19 41 83 09 55 83
59. -16 66 69 11 72
67 64 -17 71 69 16

-19 63 63 08 72 69
107 -13 -08 98 05 16
-19 04 108 08 19 96
-08 106 -16 06 96 08
17 72 29 35 78 48,
61 18 42 72 38 59

107 -09 -16. 96 06 09
-07 -17 106 17 08 91
-12 106 -10 '09 97 13

Primary 100 39 50
Interoor- 39 100 49
relations 50 49 100

Associated
Orthogonal -56 57 60 -56 57 60

'Transforma- 67 -74 08 67 74 08
tion -49 -36 80 -49 -36 80
Matrix

All values have been multiplied by 100 to eliminate decimals.

Computed from ntroid solution.



Table 4.Selected General Independent Cluster Solutions for.Illustrative Example 5*.
(cont.)

Type Solution

Normal Va

Pattern
Matrix

Oblique Orthogonal

1 109 =12 =13 99 05 11
2 711 =10 109 14 15 97
3 -12 108 =12 05 98 10
4 43 -13 78 57 14 81
5 33 91 -18 43 89 12
6 -15 86 33 09 87 47
7 74 -16 49 78 10 60
8 91 33 =16 89 44 14
9 18 42 82 10 57 82

10 60 -15 64 70 12 71
11 67 64 -18 71 79 14
12 J.8 65 61 09 73 68
13 107 -13 -09 98 05 14
14 =17 03 107 09 20 95
15 =08 106 717 06 96 06
16 17 73 27 36 79 46
17 62 18 40 72 39 57
18 107 910 -17 96 06 07
19 -05 -15 105 18 10 94
20. -12 107 -11 05 98 11

Primary 100 40 50
Intercor7 40 100 49
relations 50 49 100

Associated
Orthogonal =57 58 58
Transforma-
tion

67

=47
-73,

-35
08

81
Matrix

All values have been multiplied by 100 eliminate decimals.



Table 4 Selected General Independent Cluster Solutions for Illustrative Example 51k.
(cent.)

Type Solution

Raw 0 homax
Weight -1.0

Oblique Orthogonal Subjectivel

1- 113 -15 -25
2 10 09 91
3 -17 11.2''

4 61 -01 58.

5 29 93 -31.

6 -11 96 18
7 88 -09 31-
8 92 32 -31
9 =04 59 -63

10 76 -05 45
Pattern 11 66 64 -33-
Matrix 12 -08 79 44

13 _ -112 .16

14 03 17 89
15 -15 109 -26.

-16- 22 81 10
17. -- 73 -26 21-

18 -110 -28
19 16 03 88
20 --17 111 -21

Primary 100 47 41
Intereor7. 47 100 40
relations 41 40 100.

99 06 -08-

31 30 90
04 99 -06
71 26 66
42 89 -10
.16 94 30
89 19 42
89 46 -09
23 69 69
82 23 55
71 70 -11
20. 83 53
99 06 -05
26 35 88
05 96 -10
42 85 26
81 47 36
96 06 -11
35 25 . 87
04 98 '705

100 00 00
03 01 99
01 98 02
49 00 76
40 87 01-
01 -.-82 41
74 -03 54
87 40 02

-01 46 80
63 -01 66
69 66. 01

-01 65 64
98 -01 04

-02 06 97
03 96 -02
29 72 38
66 28 48
97 01 -03
07 -04 95
00 98 03

100 10. 23
10 100
23 22 100

Associated
Orthogonal
Transforma-
tion

Matrix

-65 ,66 37
-69 72 -07
-31 93

-65 66 37
-69 72 -07
-31 -21 93

* All, values have been multiplie by 100 to eliminate decimals.

Thurstone(1947)



Furthermore when the two solution sets are compared to the subjectiVe

solution it is apparent that they all define essentially the same

factor structure.

The third set of solutions, however, .is considerably different

from the first two sets. The third-solution-set defines factors. that

are not the same as those defined by the .first. two ets of independent-

clustet solutioneWhile the loadings in the first two sets of solutions
si filar

define patterns identical to each other andlto the subjective solution

the third set -of solutions_ define- patterns that -ate.related -but -not-

the same as those defined by the normal varimax solutions'and-the Harris

and Kaiser -aolutions.

When varying the orthomax.weight on raw and row normalized matrices

a vast-array of different independent cluster solutions were generated.

As with-the- eight physiCal variables the primaries tended to show

-low degree of relationship when associated:with,orthomax weights leSs

than negative unity.. The p ary-intercorrelations tended toward stability

when the orthomax weight was greater thah.or equal to .unity. As:with

the previous illustrative examples it was' -the normal-varimax independent

cluster solutions as well as the Harris -and Kaiser- independent cluster

solutions that-defined what appeared to be the best solutions out of all

of those that were .genetated. As one consider6 the solutions in Table 4

-it is important t _keep in mind the fact that the ideal structure

solutien.for these data is- notof an independent cluste

Example an - Independent Cluster .Problem(Coan1S

nature.

The Coan(1959) egg problem is a "semi-pla-aModariprobleM-WhOse

ideal solution must, by virtue of the methods used in defining. the

15



variables, be something other than an independent cluster solution..

The .21 variables in the problem are a function of six basic spatial

measurements taken on 100 chicken eggs falling into one of four egg

grading categories; small, medium, large, and jumbo. Ratios ure

formed between the six spatial measurements to define an additional 15

variables.

Coen provides both an orthogonal and an oblique transformation

solution for these data. Interestingly enough there is little com-

parability between- the factors :defined by the two solutions. We have

included this particular data set in this manuscript because.in contrast

to the other examples it clearly indicates that the Harris and Kaiser

procedure will define solutions that are considerably different from

those solutions defined by the normal varimax. Specifically as may

be noted-in Table 5-the normal varimax solutions are quite different from

the Harris and Kaiser solutions for these data.

Table 5 about here

It can be seen in Table 5 thAt the normal varimax orthogonal solution

is strikingly similar to the subjective orthogonal solution but the

normal varimax oblique independent cluster lution,bears no resemblence

to the subjective oblique solution. The normal varimax oblique solution

defines essentially the same factors as its orthogonal analog which are

not the same factors described by Coan's oblique solution.

It may also be noted lable5 that the Harris and Kaiser oblique

independent cluster solution defines many of the same factors as does

the subjective oblique solution reported by Coen. More importantly

ihe:factthat..theHar=ia and Raise-



Tabl Selected General Inde ndent Cl stet elution acive Example

Type Solution

Pattern
Matrix

1 99 -07 -04
2 87 42 11
3 88 -35 -19
4 73 59 -30
5 96 16 01
6 92 -30 -06
7 93 -28 -11
8 97 08 03
9 91 '37 09

10 95 18 -08
11 97 09 -02
12. 12 93 33
13 28 -41 82
14, 01 84 26
15. 13 93 21
16 01 -97 19
17 17 -87 -33
18. 01 -28 -38
19 12 80 -55
20, 02 95 -28
21 17 90 17

-04 04 -05
10 -11 15

14 -12 15

-03 -10 10

03 -24 03

-12 -12 19

-11 1 -08
-11 11 -14
-03 12 -06
-07 22 -06
13 09 -13

-04 04 03

25 00 06
2 26 25

27 04 00

17 -01 00
25 13 15

86 -03 -11
-05 11 09
05 01 -04
21 -14 22

74 -05 00
-05 24 12

00 -02 03
02 07 -45

-0.5'24 11
00 -02
97 .4)9

102 -07
89 01

115 14

88 01
Q2 41

-02 32

-01 116

-01 46
02 -13
00 20
01 00
00 33

-02 15
-02 -16

06

-07

-01
21

-08
03

08

113
07

06
55

-08
00

-90
-56
07

00

-02
15

-01
-03

-16
701
-06
-02

-03

18
-20

-01
00

15

16
30

100
01

-10

22

arris and Kaise

27 06

88 23

96 '-34

.78 16

94-, 41

100 -37
03 -14

-06 27

02 -12
-12 -22
05 29

-02 59
09 12

-02 -16
00 63

,.03 -42

02 106
00 03

04 -15
00 45

-04 122

78

47

56

40

55

59

83
83

80

87

78

-01
17_

-08
-03

09
-02
-01

-13
-10
00

-05
29

-14
21

-01
-14

-16
00

-12

-02
07

55

12

84

60

-37
-26
-02

35

39

34

08

02

13

-46
06

15

'08

04

31

07

05

-15
97

-12

-17

64

14

02

-86

-65
-18

00 60 07

-02 72 42
21 73 -23

-01 65 41
01 78. 31

-08 75 -19
-01 50 -13
-09 50 22
00 47 -14

-01 47 -09
15 54 23

-28 07 77

-01 10 -02
-01 02 51
06 10 77

'21 -05 -64

41 -.09 -85

97 05 -19
01 01 32

03 05 (52

08 12 -90

Primary

Intercor-
relations

100 -11 23 03 91 04
-11 100 -49 -18 07 87
23 -49 100 11 07 -53
03-18 11 100 04 -32
91 07 07 04 100 22
04 87 -53 -32 22 100

Associated
Orthogonal
Transfor-
mation
Matrix

74 01 09 01 66 12
-12 48 - 45. -13 05 73
-04 24 85 -34 -13 31
-11 32 24 90 06 08
-54 -55 11 05 54 32
37 -55 00 23'751 50

74 01 09 01 66
-12 48 -45 -13 05
-04 24 85 -34 -la
-11 32 24, 90 06
-54 -55 11 05 54
37 -55 00 23 -51

12

73

31

08
32

50

*A11 values have been multiplied by 100 to eliminate decimals.

+Computed flom centroid solution.



Table 5 Selected General Independent Cluste

(cont.)
Solution for Tllustr .ample 6-

Type Solution

ormal Varimax
Orthogonal

Pattern
Matrix

1 99

2 81

3 90

- 4 70

-5 92

6 93

7 97

8 97

9-. 92

10 97

11 95

12 02
13 21
14 -09
15 02

16 06
17 -07
18, 03

19 12
20 07

21 07

54

-25
52

27

-22

-21

18

-20
-09

23

96

-02

91

99

-78

-86
-17

52

78

95-

06

03

08

-45

04

10

05

04

28

05

05

-08

97

-03
-10

59

09

00
-82

-61

-13

-01
-01
23

-01

01

-07

-02

-11
-01

-02
13

-27

00

03

07

22

43

98

02

03

06

Sub ec ive

- 02 -03

23 07

25 03

20 -01
25

25 04

-10 -01
-13 -06
- 10 02:
- 16 08
-09 -04
00 04

02 07

00 39
01 05

-01 02

00 22

00 -01
01 13

01 -02
00 -24

76

-03

00

03

-03

00

99

.105
90

116

116
03

-03

03

00

-06
00
00

00

03

00

39

02

-06
02

-09

00

09

09

00

50

74-

110

57

00

00

02

-02

00

06

Oblique

00

-01

01

61

-01
-01

-03
-01

-29

01

00

-01

128
-03

01

-69

00

00
106

72

03

04 26 02
00 88 02
53 100 00
02 79 02
04

704

04

-19
04

04

04

-62
704.

42
02

47

91

193
04

00

02

97

103
03

=09

03

'48
-23

=06

09

-06
-06

00

03

-03
00

-03
706

17

747

-10
05

-10

-12
30

-02

-02
715

47

02
-07

152
-05

37

95

Orthopnal

99 04 02. -01 03-.=.06

81 ,55 _16 -03 -22:-00'
90 =22 -02 25-

69 5-;'41 -03 18'703
91 -28 04 -23 718-
93 721:-.05 705,--24

97 -19 00 -01 12 44-
96 18 02 -12 15 -10
93 721- 23 00 -11 -02
98 -07 -01 -01 18 04
95 20 01 -op. -19

-.03 --94:'01 -32' 00 104

25 -12
. :95 --01 04

707 91 07 --02±-00-

-02 ..99 01 01. 00
07 782 50 25: 01

=84 02 4841
00 =10 01. 99. 01 -pi.

-15 61. -75- 00. 00 '16
-Q9 84 -00_ 701-

: 05 96 -04 .-00 01 -24

Primary

Intercor-
relations,

Associated
Orthogonal
Transfor-
mation
Matrix

99 12 08 00 -05 -02
-08 91 =39 -13 -02 00
-10 32 88 -34..04 00 ..-

-05 24 27 93 -06 11
-05 -01 04 02 75 766
42 -04 00 -12 -66 74

100 -06 =19 701 92 03
-06 100 65 -72 09 82
-19 65 100 -54 -08 61
-01-72 -54 100 719 -86
92 09 -08 -19 100. 23
03 82 61 -86 23 100

*All values have been multiplied by 100 t o eliminate decimals.



Tab1e.5 Selected General Independent Cluster Solution for Illustrative Example
(cont.

Type Solution

Normal Orthomax Wei is 2
ue

Normal Varimax
Obli ue

Pattern
Matrix

Primary
Intercor-
relations

1 76 -05
2 -02 37

3 03 -05
4 06 13
5 -02 -17
6 03 -06
7 99 -14
8 104 -04
9 90 -01

10 116 12
11 91 -08
12 02 60
13 -07 44
14 01 138
15 00 69
16 -01 -22
17 -01 06

18 01 05

19 04 35
20 01 26
21 -01 04

01

09

02

-49
07

05

-04

00

24

-04

03

06

117

08

03

59
-04
-03

=93
-61

02

-01 24 06
-03 84 13

20 93 -22
-01 73 10

01 92 40
-13 98 -30
-03 01 -10
-09 -09 20

-01 01 -10
-02 -15 -23
17 01 25

-26 -04 32
-01 11 07

01 -07 -41
11 -04 40
M 00 -24
39 02 -83
108 -04 20
02 -01 -24
07 -04 30

16 -06 103

100 -01 20 03 92 10
-01 100 -54 -38 10 89
20 -54 100 24 10 -54
03 -38 24 100 03 45
92 10 10 03 100 21
10 89 -54 -45 21 100

80

49

58

44

57

60

84

84

80

88

80

00
14

-07

-01

06

-04

00

-10
-07

02

-01 08

40 -01
=15 13
31 -48
09 04

-15 16
-17 10

07 05

-12 33
-02 09

14 05

69 -19
13 97

93 -15
75 =22

-48 68

=43 18

-03 01

'39 -89
50 -70
53 -24

00
-07

25

-06
-01
-04

01

-11

02

01

12

=37

00

-07

-04
29

51

99

-04

05

03

58

66

73

60

76
75

49

48

46

45

51

04

12

-03

05

-01

-07

03

-03

00

07

08

34

-16

33

31

-15

-09
19

-10

-08

22

58

00

30

61

-48

-07

19

49

80

101 00 -01
74 54 11

87 =28 -02

-02 -16
01 20

18 22
70 35 -44 01 16
85 25 06 02 21

90 -30 00 -12 24

102 -26 -07 -05 -14
100 15 00 -10 -18
94 -17 20 -03 -13

104 -13 -06 -03 -21
97 26 04 16 -14

-02 98 13 -20 -02
07 33 109 01 04

=12 100 17 08 -02
-04 108 12 16 -02
02 -61 49 15 01

-03 -84 -09 34 02
01 03 -01 101 -03

-03 28 -82 04.-01
-04 66 -50 09 -02
00 104 08 17 -03

-02
04

04

01

-14

06

01

-05

03

10

-04

05

06

39

04

01

21

-06
14

02

25

100 06 16 03 25 -08
06 100.-49 -27 14 00
16 -49 100 08 -08 02
03 27 08 100 07 14
25 14 -08 '07 100 -04

-08 00 02 14 -04 100

Associated
Orthogonal
Transfor-
mation
Matrix

-76 -07 -09 00 -63 =12
-09 62 -50 -22 01 57

07 -30 -83 S 11 -26
-10 36 22 89 03 12
- 52 44 -06 -02 -57 -45
37 -45 01 16 -51 62

-76 -07 -09 00 -63 -12
-09 62 -50 -22 01 57
07 =30 783 37 11 -26

-10 36 22 89 03 12
52 44 -06 -02 -57 -45
37 =45 01 16 -51 62

99 12 08 00 -05 -02
-08 91 -39 -13 =02 00
-10 32 88 -34 04 00
-05 24 27 93 -06 11
-05 -01 04 '02 75 -66
-02 -04 00-7-12 -66 .-74

*All values have been multiplied by 100 to eliminate decimals.



similar toJ.he subjective orthogonal solution. That is, although the

Harris and Kaiser orthogonal and oblique independent cluster solutions

bear no resembelance to each other in terms of the factors they define

and although they bear little similarity to the normal varimax oblique

solution in terms of factors defined they do appear to define the same

factors as their corresponding subjective solutions as reported by Coen.

In Table 5 an additional set of othomax solutions is reported.

For these particular data the deflnitioh of an ideal solution was

somewhat elusive, but if Coan's reported solutions are accepted as

the ideal solutions then the normal orthomax solutions associated with

an orthomax weight of positive two are more desirable than the normal

varimax solutions. These solutions are the extra set reported. It

interesting to note that although these solutions are not the same

as the Harris and Kaiser solutions they would result in the same

interpretations inasmuch as they define the same factors, orthogonal

and oblique, as the corresponding orthogonal and oblique, respecti ely,

Harris and Kaiser independent cluster solutions.

suTpar-ofETA---iications

As with so many empirical investigations caution must be exercised

in attempting to generalize the system associated with the orthomax

independent Cluster solutions generated for the illustrative data sets.

The systematic varying of the orthomax weight will not always result

in a set of independent cluster solutions that appear to be systematically

related nor will it result in a stabilization of the primary Intercorrelations

Yet,consistancies and inconsistencies noted in the empirical

served as the bases for he title of the manuscript.

ection



Using the systematized Computational procedures described in an
manuscript

earlier part of this a variety of independent cluster solutions

were generated. For every data set the equamax, quartimax and varimax

solutions, both raw and normal, were computed along with numerous other

orthogonal solutions. For each orthogonal solution an oblique analog

was computed. Also computed for each data set were the Harris and

Kaiser independent cluster solutions.

The solutions recorded were the Harris and Kaiser solutions as

well as the "best" set of orthomax solutions. For four out of five of

the data sets the normal varimax independent cluster solutions were

superior to the other orthomax independent cluster solutions, in simple.

structure and/or defining the factors in accordance with the subjective

solutions. However, it was noted that for one particular set of data

the normalvarimax solutions tended to be misleading in terms of defining

factors. Although there was always a reasonable orthomax solution set

for each set of empirical data analyzed the particular orthomax weight

defining the solution could not be determined apELaEL. Furthermore.it

was evident that disasterous results could emerge with certain orthomax

solutions.

Fortunately the Harris and Kaiser procedures. as modified in this

manuscript always provided-the best get of-independent cluster solutions

for the data sets. These results were not-expected. The fact that the

orthogonal independent cluster solution defined by the Harris and Kaiser

-procedures was without exception as good or etter than the best

orthomax orthogonal solution was totally umt.Tpected. It would seem

as though we have, quite by accident, discovered a _procedure -for computing

orthogonal transformation solutions that may be superior to-the more

traditional procedu--s employed with the general orthomax equation,



least within the framework of simple structure.

For at least one particular data ree, the five socio-economic

variables, the orthogonal independent cluster solution appeared to be

better within a simple structure framework than the oblique independent

cluster solution. For another data set, the box problem, it was evident

that the ideal solution was not of an independent cluster nature but

the orthogonal independent cluster solution did provide a much more

reasonable simple structure solution than did the oblique independent

cluster solution. For the other data sets the oblique independent

cluster solutions appeared to be better within a simple structure

framework than the orthogonal independent cluster solutions.

Discussion
-- 7

The objective of this manuscript was to present a general model

for the independent cluster sullAtion in factor analysis. The model,

having its basis in the work of Harris and Kaiser (1964), was presented

and discussed.

It was noted that for data that define perfect orthogonal independent

clusters the model will result in only one solution, an orthogonal

independent cluster solution. More precisely the principal axis

representation of such a solution would have perfect simple structure.

For a data set that define perfect oblique independent clusters there

are two possible solutions defined;. the first is an orthogonal solution

while the second is an oblique analog of the orthogonal- lution. For

such a data set it is rather apparent, when looking at the transformation

solutions, which particular solutions has better simple structure. The

simple structure associated with the oblique independent cluster. .solution

will be vastly superior to that.. of the orthogonal solution.



For a data set that defines factors that are not of an independent

cluster nature there are also two possible independent cluster

representations; the orthogonal representation, which is the type of

transformation solution typically used in many factor analyses, and the

oblique analog of the orthogonal solution. For this particular data

set the transformation solution that is most interpretable within a

simple structure framework will be a function of whether or not the

data define factors that tend toward orthogonality or whether or not

they define factor's that do not tend toward orthogonality. Unfortunately

we have been unsuccessful at defining some meaningful criterion for

comparing an orthogonal solution with its oblique analog to determine

which solution is more interpretable within a simple structure framework.

The results presented in the empirical section suggest that the

Harris and Kaiser (1964) procedures as modified in this manuscript

will provide the best set of indepe-'ent cluster solutions. Although

it may be possible to generate a number of independent cluster solutions

by systematically varying the orthomax weight the results of the

empirical applications presented herein suggest that when one does

get a desirable solution through variations of the orthomax weight

in-the orthomax criterion the results that they get will most likely

be-siMilar to the results obtained using the modified Harris and

Kaiser procedures. Alternatively it is possible that-they might get-

very misleading results.

. The orthogonal transformation solution has been a panacea in

factor analysis.. With the advent of the Work of Harris and Kaiser (1964)

the oblique independent cluster solution also began to,become

panacea for some researchers. Seldom if ever-do the researchers report



both an orthogonal and an oblique independent cluster solution. Even

when the Harris and Kaiser oblique independent cluster procedures appear

to define a poor solution it is possible to compute an orthogonal

solution that is as bad or worse than the oblique Harris and Kaiser

independent cluster solution. Using the procedures set forth ,in this

manuscript it is possible to bring some order to the chaotic use of the

independent cluster solution.

In summary then:

a) in this manuscript certain algebraic similarities between the

orthogonal and oblique independent cluster solutions have been noted,

thereby providing an algebraic link between the orthogonal and oblique

independent cluster solutions;

b) empirically it has been demonstrated that by allowing the

orthomax weight to vary in the orthomax criterion it is possible

to generate a variety of independent cluster solutions for a single

data set;

c) although the general model does nost assuredly exist it appears

as though it is the Harris and Kaiser procedure that define the best

set of independent cluster Solutions.

As a function of the empirical presentations in this manuscript

the following procedure is suggested for use in the routine calculation

of orthogonal and oblique independent cluster solutions from some

orthogonal factor matrix P.

.-a) Compute the major product R* of P as PP'

b) Compute the principal axis representation 21 of R*, where the

umns of a are unit length latent
vectors associated with the non-

zero latent roots which are the diagonal entries of M2



Compute an orthonormal transformation matrix T such that 97 maximizes

the orthomax criterion. The orthomax criterion for this particular cas-

as noted by Ha and Kaiser (1964) will necessarily be general

inasmuch as the second term of the criterion equation, the one associated

with the orthomax weight, will be a constant.

d) Compute the primary factor intercorrelation matrix as

W* = D
-1

T'M
2
TD

-1

D2where p- is the diagonal matrix whose nonzero entries represent the

column sums of squares of MT.

) Compute the primary pattern matrix A and the primary structure

matrix B*

A- = 1111

B* = 1v21E:1

f) Finally compute the orthogonal analog, F, cif the oblique independent

cluster solution as:

F =

In final conclusion it is most prudent to realize that any data

set may be forced into an independent structure framework. If, when

in the independent cluster framework, the variables appear to be

complex it may be that the independent cluster framework does not

adequately describe the.data in a simple structure sense. For such data

some other type of 2.13ligas solution will-most likely provide a-better

simple structure solution than the independent cluster solutions.
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